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A new non-Fourier data processing algorithm, the filter diago-
nalization method (FDM), is presented and applied to phase-
sensitive 1D and 2D NMR spectra. FDM extracts parameters

the 2DFT spectrum can be phased to the desired double ¢
sorption lineshape?. A perfect example of this phenomenon
occurs in 2DJ-resolved spectroscopg) in which the phase-

(peak positions, linewidths, amplitudes, and phases) directly from
the time-domain data by fitting the data to a sum of damped
complex sinusoids. Grounded in a quantum-mechanical formal-
ism, FDM shares some of the features of linear prediction and
other linear algebraic approaches, but is numerically more effi-
cient, scaling like the fast Fourier transform algorithm with re-
spect to data size, and has the ability to correctly handle spectra
with thousands or even millions of lines where the competing
methods break down. Results obtained on complex spectra are
promising.  © 1998 Academic Press

Key Words: filter diagonalization method (FDM); linear predic-
tion; 2D NMR data processing; J spectroscopy; phase-twist
lineshape.

twist lineshape both distorts proton multiplet cross sections ar
necessitates an absolute-value 45° integral projection wh
trying to obtain a homonuclear decoupled proton spectrun
The long tails of the dispersion-mode lineshape dominate tt
absolute-value projection, leading to disappointing resolutio
in the decoupled spectrum.

In this article we demonstrate an alternative method t
standard FT analysis called the filter diagonalization metho
(FDM). As we will show, FDM is related to existing linear
algebraic methods but has important practical advantages co
putationally with regard to speed, stability, the ability to effi-
ciently process very long time signals with many (e.g.6)10
spectral features, and the ability to process multidimension
signals directly. The output of FDM is a “line list” of spectral
parameters for Lorentzian lines in terms of frequency, width

NMR spectra can be subject to a variety of known impe[a_mplitude, and phase. This direct representation of the spect
fections. For example, the first few data points of the frggrameters can be obtained, even for very large 2D data s
induction decay (FID) can be corrupted by the risetime of thith perfectly acceptable computation times on readily avail
audio filters, the ringdown of the probe after a pulse, @Pleé computers, and it is in this arena that FDM shines
hardware delays before the beginning of acquisition necessegg’,mpared to processing and phasing an FT spectrum, and tt
for example, to reestablish magnetic field homogeneity af@taining a “line listing” by analyzing the spectral features,
stability after the application of a pulsed field gradient (pFGEDM appears to be more efficient, can offer better resolution i
In two-dimensional (2D) NMR it may not be possible tghe case of truncated signals, and gives the possibility
acquire a sufficiently long signal to obtain the desired resollidmediate data compression. In addition, the direct represe
tion in the interferometric ofF, dimension because eath tation of the data makes it possible to manipulate unfavorab
increment requires at least one repetition of the entire puld lineshapes like the phase twist into pure double absorptio
sequence and acquisition, and the sensitivity of the 2D expgtode lineshapes.
iment can decrease markedly if the maximum acquisition time The FDM line list can be used to create a substitute c
in Fy, t;m becomes long, necessitating extensive time aveersatz” NMR spectrum. This is, from an experimentalist's
aging to obtain an acceptable signal-to-noise ratio in the findewpoint, an aggressive approach, in which any signal n
spectrum {). Finally, in some cases, the lineshape after 2getected by FDM will vanish from the spectrum. The justifi-
Fourier transformation (FT) is intrinsically undesirable. It igation for this approach will hinge on comparison of the ersat
well known that spectra which are purely phase modulated $zectrum with the FFT spectrum in cases where the data se
a function oft, give rise to mixed-phase (“phase-twist”) known to be complete. An alternative and more conservativ
lineshapes in which neither the real nor the imaginary part 8Pproach is to calculate a “hybrid” spectrum by (i) construct-
ing the ersatz spectrum; (ii) synthesizing the time-domai
signal corresponding to this spectrum; (iii) subtracting thi
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APPLICATION OF FILTER DIAGONALIZATION TO 1D AND 2D SPECTRA 305

signal from the original data; and (iv) Fourier transforming thiassumptions concerning the number of lines, their frequencie
residual time signal, adding the result to the ersatz spectruon.the level of noise contaminating the desired signal.

This hybrid approach is more conservative in that the original Briefly, the central ansatz (assumption) of FDM is to assc
noise, etc., in the data is retained but in which there may bmte the signat, to be fitted by the form of Eq. [1] with the
substantial improvement in spectral lineshapes. The relatidimme autocorrelation function of a fictitious dynamical systen
ship of these spectra to previous approaches will become cldascribed by an effective complex symmetric Hamiltoniar
in what follows. operator() with eigenvalues ¢,} (4)

THEORY o= (D | €M by) [2]

The Filter Diagonalization Method on some “initial state”®,. The notation (.|.) denotes a com-

FDM was first introduced in 1995 by Wall and Neuhausd¥€X symmetric inner productap) = (bla), without complex
(4) as a method of spectral analysis of (one-dimensional) tiiéhjugation. Note that under the assumption fhdtas a finite
correlation functions in quantum dynamics calculations. It h&ank, the usual LP formulas can be derived from Eq. [2]
subsequently been substantially improvéde) and extended However, FDM does not requit@ to be of finite rank. Using
to the case of the multidimensional mod@l &nd experimental Ed. [2], the fitting problem becomes equivalent to diagonaliz
(8) time signals. FDM has also been applied to a number & {2 or, equivalently §), the evolution operator over a single
important problems in the fields of theoretical chemistry arfine stepU = exp(~ir(2). Although we do not know eithey
physics 0—13 where it has shown both conceptual simplicit" o, we can still find a basis in which matrix representation:
and numerical efficiency when compared to past methods, #¥dJ can be constructed. Furthermore, by a clever choice ¢
where it has been accepted with enthusiasm. As the main p(ﬁﬁﬁ's it is possible to make the matrix representatiod ¢
of this paper is the actual experimental results we have dimpletely determined by the measured signal(ii) diago-
tained using FDM with optimized pu|se seguences, we Wmally dominant, with Off-diagonal matrix elements that tend tc
only summarize the basic ideas and sketch the mathematf@@fay with a roughly sinc-like dependence along the minc
underpinnings, without repeating detailed formulas. A detailétiegonal; and (iii) ordered according to frequency, just like th
account of 1D FDM 14) and 2D FDM 6) theory as app“ed to conventional NMR SpeCtrUm. This matrix is easy to diagonal
time-domain NMR signals has already been given. ize, and can be handled in series of frequency windows, ea

FDM is designed to solve thearmonic inversion problem, of which generates a small submatrix of si&g;, X Ky,

which is essentially that of fitting the given complex tim&vhereK;, is between 3 and 100 depending on the details ¢
signalc,, = C(tn) defined on an equidistant time grid= nr, the problem. Finally, because an FFT can be used to constrt

n=0,1,...,N, tothe sum of exponentially damped Smuthe matrix elements djl from the FID itself (4) the numerical
soids, effort to construct these matrices scales like the FFT, name
roughly N log N for an FID of N complex points.

A generaltwo-dimensionaharmonic inversion problem can
be formulated as a nonlinear fit of a 2D time-domain agay,
by the plane wave representation

K
c,= > deexp(—intw,), [1]
k=1
with a total of K unknowns, th& complex amplituded,, and « . .
theK complex frequencies, = 2xf, — iv,, which include the Crure = 2 Ge@XP(—iNy 7 01 ) XA~ To05) [3]
damping. The more compact notation is preferred, as the K
imaginary partsy, (widths) of the frequencies always appear
together with the real parts#2, (positions) in FDM. Even
though the harmonic inversion problem is highly nonlinear, i
solution can be obtained purely by linear algebraic methods,
which there are many variants. Some, like the Prony meth
(15), MUSIC (16), ESPRIT (7), etc., are well known in signal
processing circles in the electrical engineering literature, afl
others, like linear prediction (LP), have already been used . .
extensively in NMR applications18-29 and are mature Crum, = (Do MM M2y (4]
enough that entire books have been devoted to their exposition
(26). There are some important differences between thed&gonalization of the operatots, = exp(—lefl) andU, =
alternatives, some of which hinge on whether there may be aawp(— sz-rz) then yields the desired frequency coordinate:
prior knowledge about the signal in question. FDM makes r{fand widths)w,,, and w,, of the peak in the two-dimensional

with a total of K unknown complex numbers, i.e., thé
omplex amplitudes, and two sets oK complex frequencies
K @z)- The key ansatz of 2D FDM is obtained by intro-
Hcmg two commuting complex symmetric operatﬂfls QZ,
aving the same set of eigenvectdfsbut different eigenval-
§S @1k andw,, which are the unknown complex frequencies:
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plane, while the eigenvectdf, yields the intensity and phase,striking when the multidimensional harmonic inversion

d. (7, 8. problem, Eq. [3], is compared to a conventional 2DF1
spectral analysis. In the latter case the uncertainty princip
Spectral Representations: Ersatz Spectra is applied to each dimensioseparately,requiring a suffi-

Assuming that the spectral parameters can be estimatedcb?ﬁtly long dexte\z/:w/fllon o?:the 2D Sk')?na'l‘l.'”ztm; oth ?Ir?jct-h
FDM, an “ersatz spectrum” can easily be constructed by°"'s: M antr;z. th enat K}g pfr(:h e?D'S.O le'so V?th te
summing over these parameters. As such the 1D absorpt guirement for the sizdy, N,, of the sighalis nottha

ersatz spectrum of the (real) running frequeficis given by strict. From the informational point of view, all unknown
spectral parametersdy wq, w,) can be extracted to a

d precision dictated by signal-to-noise considerations once tf

AF)= - |m{k}_ [5] total amount of data, the produbLN,, is greater than the
K 2mF — oy total number of unknowns,K3 This means that, in some
cases, it may be possible to “make up’” for poor sampling

Since, in the language of complex analysis, the spectrum3@ng one dimension by increasing the sampling along
determined by the position ab,, in the complex plane, it is different dlmenspn, .WhICh' wou'ld pe very .attractlve for
economical to refer to each entry in the line list apale. SOM€ NMR applications, in which it is typically easy to
Another useful example is the absorption-mode part of a Aptain good digitization ifF,. This statement is strictly true

ersatz spectrum, which can be defined as a function of the ] @ model signal of randomly distributed narrow lines in
frequencies,, F, as, e.g., the 2D planeT) and is approximately true for real 2D NMR

data in the absence of wide lines, many peaks with dege
1 d erate frequencies in either of the two dimensions, &nd
A(F,, Fy) = > Im{ }Im{ K } [6] noise. Other possible limitations include true noise, an
k 2mF; — w 2mF, — oy numerical limitations associated with the highly nonlineal
character of the harmonic inversion problem. This potentic

in which it is assumed that the features are all in phagdein @dvantage is discarded once a Fourier transform is pe
Note here that while the quantify(F,, F.) is obtained trivially formed in theF, dimension, as is normally done in NMR
in terms of the spectral parameters, the expression in Eq. [6fRPlications using LP, because then each interferogram
highly nonlinear. In fact, there is some freedom in how onigeated separately, ignoring important correlations which ar
chooses to construct a spectrum from the FDM line list. It Ricked up by an up-front 2D method.

always possible to construct a spectrum which would agree't is important to realize the difference between the presel
with the conventional 2D FT spectrum, although this avenuef@mulation of the 2D harmonic inversion problem, Eq. [3],
unlikely to be useful if the 2D lineshapes are phase twist&hich consists of aingle sumover intrinsically 2D features,
While the FDM line list itself may be of most use for othe@nd the direct-product formulations proposed previously in th
computer programs to exploit, for example, in database searéfntext of LP 27-29. In the latter case the authors used
ing or automated assignment procedures, spectral represefitgdels with a direct-product set of unknown spectral paran

tions are more useful for human appraisal. eters, fo, wacr dack, K=1,2,... Ky, k' =1,2,...Ky, s0
that in the 2D plane the unknown spectral features would fort
Informational Considerations in 2D FDM a rectangulak, X K, grid with totalK; + K, + K3K, number

) of unknown parameters. In Eq. [3] the 2D frequencigs w,
Clearly, the methods of spectral analysis based on solutigegnotform a direct-product 2D grid. The present non-direct:
of the harmonic inversion problem, Egs. [1] and [3], argroquct model does not preclude a direct-product output (a
conceptually different from those based on the FT. In partlg-_g_, in the case of COSY and NOESY) vet results in a muc
ular, the time-frequency “uncertainty principle,” more compact representation for cases when the 2D spectra
not have direct-product patterns, for example, HSQC 01J2D
dw = 2m/Nr, [7] spectra, which are anticipated to be the most suitable applic
tions for the present technique.
which is an intrinsic property of the FT, can be sidestepped
by solving the harmonic inversion problem: the spectrg|
resolutionsf, defined by the width of a single peak or by the
distance between two close peaks, can be very small becaudgven though the harmonic inversion problem is a highly
the complex frequencies, are now simply the fitting pa- nonlinear one, its solution, as in FDM, can be obtained b
rameters. The quality of the fit is determined partly bpure linear algebra. This feature is shared by the othe
signhal-to-noise considerations and can be very high even frigh-resolution”” methods {5-26. What makes FDM dif-
short data records. This difference becomes even mdegent from most of the other linear algebraic approache!

ocal Spectral Analysis
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and thereby makes it far more useful for multidimensionathen comparing the timing of FDM with LP methods, as in
NMR applications, is its ability to avoid dealing with a largehe latter the filter length is usually chosen to be somewh:
linear algebraic problem of size at least as large as the rasthorter thanN/2. An analogous 2D formula is used for 2D
K of the signal subspace, which must include noise. This spectral domainsH; min, Fimad X [Famin Fomax-
done by performing the spectral analysis locally for a cho- A conceptually similar but numerically different tech-
sen frequency domain and, consequently, by solving a smiijue, LP-ZOOM, is a modification of the linear prediction
eigenvalue problem whose eigenvalues and eigenvectatgorithm for local spectral analysis, and was demonstrate
then yield the desired complex frequencies,{ w,) and in 1988 @0). LP-ZOOM potentially shares many of the
amplitudesd, in this small spectral region. This ability toadvantages of FDM but uses the familiar LP procedure t
hone in and perform a local spectral analysis thus avoidenstruct the LP coefficients using a chosen filter length ar
problems of estimating the total rark of the signal sub- determines the frequencies and widths, and then the amp
space. The parameters obtained are insensitive to spectudles and phases, so that there are more adjustable par:
properties outside the chosen small spectral domain, as nedgrs to optimize. LP-ZOOM is far preferable to conven
be shown by adjusting the size of the latter and findingonal LP methods, but no 2D formulation of LP-ZOOM is
identical results §—98). available in the sense of Eq. [3].

This divide-and-conquer strategy breaks down the har-
monic inversion problem, given by Eq. [1] or [3], into aNumerical Efficiency

series of small spectral domains, each of which is handled inrpare are two parts to the FDM algorithm, the construc
a numerically stable, speedy, and reliable fashion. A cOMjap, of the matriced) and their diagonalization. Assuming
ment should be made here as the latter statement seems tg.0e e diagonalization scales K&, ., the total numerical

in_conflict with the harmonic inversion problem, whichgttqr 1o extract the spectral parameters will scaleNaog
implies a global fit of the entire time-domain signal, and ag (N/2K, i K2
win

; X win- The first term assumes that the matrix
the problem of choosing the paramet€iis known t0 be @ gjements are obtained by an FFT algorithm, and the secol

major difficulty in the other linear algebraic approacheg,s; counts the number of frequency windows that need to t
based on thelobalfit of the signal by the sum of sinusoids. geq | practice, for most NMR signals, the diagonalizatio

It is known, for example, that a large filter lengthshould 540 takes the lion’s share of the CPU time. As such
be used in LP analysis whenever noise is presf), /et ging the FFT algorithm is not strictly necessary. Note
for long FIDs even a 1D problem produces matrices whi wever, that for reasonable values Wfthe scaling is

take days to handle on a vector comput@)(so the ,cqally purely linear as far as the diagonalization portion i
tendency is to skimp somewhat df, using the smallest ;oncemed, ak,,, can remain fixed. In addition, due to the
value that works. In FDM, however, no attempt is made i@y 5| size of the matrices involved, FDM does not encour
achieve a global fit in one shot. The sikg;, of the small o nymerical problems caused by the ill-conditioned natur
generalized elge.nvaltlje problem Is, in principle, an adjusis these matrices; nor does it suffer from the typi¢@l

able parameter, just lik. For a givenK;, not more than gcajing of the numerical effort with respect to the rank of the
Kwin COMplex poles, can be extracted: some of these polegigna| subspace that is characteristic of conventional L
may be the true signal poles, and some may represent n0j§@hods. Finally, it is possible to implement FDM trivially

Based on our experience and the informational considgjs 4 parallel architecture computer by simply assigning eac
ations (1), howeverwe never consider [§, as an adjustable ,,cessor its own spectral domain to analyze. These fe

parameterput instead, over a spectral regidffi,, Fmad in - yres; and the fact that in some NMR experiments one has
a spectrum of spectral width SW, use the fixed formula 4iher good idea of where to expect signals or what signa

N (Fmax - Fmin)

Kwin =% E SW ’ [8] 02N
Q\“/O O “\\\\/
that is, the largest number possible consistent with the local O.N 5 \(_7
information content of the signal. The factaris between o "F
1.0 and 1.1 to take account of edge effects. For a sufficiently 1

long FID, x is fixed at 1.0. When truncation is significant, so
that the grid points may be quite sparseis fixed at 1.1.
Whenever the fit is excellent it is also insensitiveddNhen .
. . . FIG. 1. The molecule under study. The resonances shown in the NMI
all is said and done, FDM thus uses tinaximum number of spectra in Fig. 2 arise from the protons on the ribose ring and several of tl

polesto fit the entire frequency range, namelyf2 for an gybstituents. Spin-spin coupling to fluorine-19 creates extra splittings in tt
FID of lengthN complex points. This is important to realizespectrum.
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FIG. 2. A 1.4 ppm section of the 1D spectrum bfobtained by various data processing methods. The three FT spectra on the left show the quality o
data and change in lineshape and resolution when the signal is truncated. Digital filtering and zero-filling have been used to obtain the best spectral repre
The central three spectra are ersatz spectra constructed artificially from the poles of Eq. [2] detected by FDM. Although not easily visible at the vertic
of the figure, very small peaks in the baseline were identified with fidelity by FDM. The convergence onto the spectral features is somewhat different th
the FT spectra. Note that narrow spectral features, especially if relatively isolated, are located very accurately. Wide overlapping lines converge onto th
amplitudes and widths more slowly with respect to the number of time-domain points. As follows from Eqg. [8], a total of 264, 132, and 66 poles were L
construct the ersatz spectra for the cases 8192, 4096, and 2048, respectively, in-at.4 ppm region centered on the expansion shown. Note, however, th
far fewer than this number of poles have significantly large amplitadeZhe far right column shows the hybrid spectrum obtained as described in the te

are of particular interest, make FDM potentially extremelguite long signalsN, ~ 10% having quite complex spectra, so

useful in high-resolution NMR. that efficient applications of the other linear algebraic methoc
would be questionable. All proton NMR spectra were obtained
EXPERIMENTAL 25°C on a 500-MHz Varian UnityPlus spectrometer equippe

with a Varian triple-resonance pulsed field gradient probe. Pri

Having emphasized the main features of FDM we now derautions were taken to shim the magnet to obtain good, but r
onstrate it on the experimental NMR signals and compare thatstanding, lineshape. There was no special sample preparati
results with those obtained by conventional FT-based spectabcessing was accomplished off-line on a small SGI Indig
analysis. To demonstrate the actual power of the method we chasekstation or on a Pentium 133-MHz PC. It actually took sig:
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nificantly more time to convert the data from one format to DSE 2DJ
another than to process it with FDM.
90°180° 180°
|

1D FDM y oo

First we test the 1D version of FDM on a representative :\
section of the 1D NMR spectrum of the molecule shown in Fig. . V/\"‘
1, a fluorinated ribose derivative. A 1.6 ppm interesting section
of the spectrum was selected, and the central 1.4 ppm sectiofiG. 3. A modified pulse sequence for 2Bresolved spectroscopy using
is shown in Fig. 2 under a variety of processing conditions. Asdouble spin echo (DSE). The 180° inversion pulses werpS6M pulses
with a constant 25-kHz RF amplitude designed to invert the entire proto

IS typlcal of many reaction product mixtures, traces of Impumé(andwidth. Phase shifts of the spin echo which would be created by tt

peaks are evident in the baseline. A large spin—spin couplingg{@yjication of a single such pulse are conveniently removed by a secor
9F has split some of the proton multiplets. At top left is th@wversion pulse immediately after the 90° excitation pulse.

conventional FT spectrum obtained in 16 scans using 8K

complex points over a spectral width of 10 kHz, with the

700-Hz region of interest plotted. The spectra directly belo@@trix elements, ani,;, was allowed to vary somewnhat, for
show the effect of truncating the time-domain signal at tHgPnvenience. If the entire spectral width were processed, the
indicated number of data points. Apodization, to avoid sevell1€S would increase by a factor of about 14. Note, howeve
truncation effects, and zero-filing have been employd@! it is not necessary to process empty spectral regions,

throughout. As more and more of the FID is deleted tHggions of little interest, like those around a residual solver

frequency resolution is degraded, in accordance with expectazonance.
tion. The three panels in the middle column show the FD FDM
ersatz spectra, constructed from the poles isolated by F
using Eqg. [2], from the same FID. We must emphasize thatThe 2D J-resolved spectrum of the same molecule wa
these spectra are obtaindutectly from the time-domain data obtained using the pulse sequence of Fig. 3. This pulse s
itself, and not by any “extension” of the truncated FID fol-quence differs slightly from the conventional 2Bequence in
lowed by a conventional FT, as is many times done with the LtRat two inversion pulses are used, one directly after the 9
method. The right traces show the hybrid spectrum describextitation pulse. This double spin echo (DSE) allows one t
earlier, in which the residual between the original data and thee highly efficient frequency-modulated (FM) inversion
FDM fit is Fourier transformed and added to the ersatz spguilses without any offset-dependent By-dependent phase
trum. For the complete signal, along the top row, there #hifts, as the even-numbered echoes from any composite |
negligible difference between the ersatz spectrum and thersion pulse have constant pha&d)( The use of a very
hybrid spectrum, showing that FDM can achieve an excelleatcurate 180° pulse makes certain that coherence transfer [
fit. The hybrid spectrum is similar in spirit to that obtained bgesses akin to those in a COSY spectrum do not occur, mir
extension of an FID with LP followed by a conventional FTmizing artifacts in the 2DJ-resolved spectrum.
However, LP extension and conventional FT is a slight mod- The top trace in Fig. 4 shows an integral projection of the
ification of FT analysis. The hybrid spectrum is, on the oth@bsolute-value 20) spectrum along the 45° diagonal in fre-
hand, a slight modification of FDM, as it is FDM that was useduency space, to give the proton—proton decoupled spectrum
to construct the spectral features. To the extent that narrtive same 1.6 ppm region. Coupling to fluorine-19 is not, o
spectral features are correctly identified by FDM, these linesurse, removed in the projection. The data matrix consisted
are completely subtracted from the time-domain data, and 58K complex points over a 10-kHz spectral width y,
the truncation artifacts that would have been produced by thero-filled to 32K, and 64 increments I®, over a spectral
FT are avoided. The advantage of the hybrid spectrum is thetth of =50 Hz, zero-filled to 128 points. Digital resolution
it retains noise, baseline roll, and other features of the recordedhus quite good but, as is well known, the dispersion-moc
data, and so is a conservative approach. The disadvantagwils of the phase-twist lineshape lead to “Eiffel Tower”
that certain limitations of the FT itself cannot be overcome iimeshapes in the projection, in which the decoupled line is fz
the hybrid spectrum, although if the residual is fairly small thevider than an individual multiplet line in the absorption-mode
FT limitations apply only to an insignificant part of the datalD spectrum. Various remedies have been tried in the past. T
With regard to the numerical effort to obtain the ersatase of heavy resolution enhancement digital filters like th
spectra shown, the total CPU time on a Pentium 133-MHz PPseudo-echo” can improve the appearance of the projectiol
using an unoptimized FORTRAN code compiled with the freleut at the cost of large intensity distortions between lines ¢
gnucompiler under LINUX were 5, 13, and 32 s for the 2048]ifferent natural linewidth, and a heavy toll in sensitivi82J.
4096, and 8192 data sets, respectively. The scaling is kwequency-domain computer procedures to iteratively remoy
strictly linear because this code usesl@vFT to construct the the dispersion-mode contributions, and so avoid the null prc




310 MANDELSHTAM, TAYLOR, AND SHAKA

FT projection

sa | Bo | BO 48 46 44 42 40 38

FDM projection

S
I

FIG. 4. (Top) Integral 45° projection of the absolute-value 2DF3pectrum to obtain a proton-decoupled proton spectrum. A total of Bdrements
were used, leading to a frequency-domain data matrix of X6k28 points over a spectral range of 10 klz100 Hz after zero-filling. Dispersion-mode
tails of the phase-twist lineshape lead to poor resolution in the projection. The asterisk marks an “artifact” arising from non-first-order coupling. (C
The integral 45° projection of the absorption-mode ersatz spectrum constructed from the poles isolated by FDM.tOinlgré@ents were used. There
is a dramatic improvement in resolution. (Bottom) An expanded portion of the ersafzréfolved spectrum after the transformation Eq. [9] has bee
applied to each pole. The original spectral widthFipwas =50 Hz, of which the centrat-25-Hz region has been extracted. The FT spectrum (withou
zero-filling) would thus contain only 8 data points across this frequency range based on the same 16-point interferograms. Nevertheless, beautiful |
cross sections are obtained by FDM, without the baseline distortion characteristic of the usual phase-sensitive cross sections in the FT spectt

strong-coupling artifact lies outside the region shown.
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jection, require a very high-resolution high signal-to-noise datiag informationon line positions, widths, and intensities, FDM

matrix to work, do not handle lines of different width properlywill prove to be of particular advantage versus spectral-base

falter if a line is narrower than presumed by the operatschemes, providing a database that can be used directly for 1

processing the data, and do not necessarily conve3ge ( assignment procedure. Finally, while FDM is slower compu

“Skyline projection” distorts signal amplitudes and amplifiegationally than a simple FFT, &calesin much the same way,

noise in the projection3d4). making it a compelling solution for very large multidimen-
The second trace shows the absorption-mode projectisional NMR data sets where other linear algebraic approach

from the 2D FDM () ersatz spectrum with the same datg become prohibitively expensive.

using only the first 16,tincrementspbtained as follows. The
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