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A new non-Fourier data processing algorithm, the filter diago-
nalization method (FDM), is presented and applied to phase-
sensitive 1D and 2D NMR spectra. FDM extracts parameters
(peak positions, linewidths, amplitudes, and phases) directly from
the time-domain data by fitting the data to a sum of damped
complex sinusoids. Grounded in a quantum-mechanical formal-
ism, FDM shares some of the features of linear prediction and
other linear algebraic approaches, but is numerically more effi-
cient, scaling like the fast Fourier transform algorithm with re-
spect to data size, and has the ability to correctly handle spectra
with thousands or even millions of lines where the competing
methods break down. Results obtained on complex spectra are
promising. © 1998 Academic Press

Key Words: filter diagonalization method (FDM); linear predic-
tion; 2D NMR data processing; J spectroscopy; phase-twist
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INTRODUCTION

NMR spectra can be subject to a variety of known imper-
fections. For example, the first few data points of the free
induction decay (FID) can be corrupted by the risetime of the
audio filters, the ringdown of the probe after a pulse, or
hardware delays before the beginning of acquisition necessary,
for example, to reestablish magnetic field homogeneity and
stability after the application of a pulsed field gradient (PFG).
In two-dimensional (2D) NMR it may not be possible to
acquire a sufficiently long signal to obtain the desired resolu-
tion in the interferometric orF1 dimension because eacht1
increment requires at least one repetition of the entire pulse
sequence and acquisition, and the sensitivity of the 2D exper-
iment can decrease markedly if the maximum acquisition time
in F1, t1max, becomes long, necessitating extensive time aver-
aging to obtain an acceptable signal-to-noise ratio in the final
spectrum (1). Finally, in some cases, the lineshape after 2D
Fourier transformation (FT) is intrinsically undesirable. It is
well known that spectra which are purely phase modulated as
a function of t1 give rise to mixed-phase (‘‘phase-twist’’)
lineshapes in which neither the real nor the imaginary part of

the 2DFT spectrum can be phased to the desired double ab-
sorption lineshape (2). A perfect example of this phenomenon
occurs in 2DJ-resolved spectroscopy (3), in which the phase-
twist lineshape both distorts proton multiplet cross sections and
necessitates an absolute-value 45° integral projection when
trying to obtain a homonuclear decoupled proton spectrum.
The long tails of the dispersion-mode lineshape dominate the
absolute-value projection, leading to disappointing resolution
in the decoupled spectrum.

In this article we demonstrate an alternative method to
standard FT analysis called the filter diagonalization method
(FDM). As we will show, FDM is related to existing linear
algebraic methods but has important practical advantages com-
putationally with regard to speed, stability, the ability to effi-
ciently process very long time signals with many (e.g., 106)
spectral features, and the ability to process multidimensional
signals directly. The output of FDM is a ‘‘line list’’ of spectral
parameters for Lorentzian lines in terms of frequency, width,
amplitude, and phase. This direct representation of the spectral
parameters can be obtained, even for very large 2D data sets,
with perfectly acceptable computation times on readily avail-
able computers, and it is in this arena that FDM shines.
Compared to processing and phasing an FT spectrum, and then
obtaining a ‘‘line listing’’ by analyzing the spectral features,
FDM appears to be more efficient, can offer better resolution in
the case of truncated signals, and gives the possibility of
immediate data compression. In addition, the direct represen-
tation of the data makes it possible to manipulate unfavorable
2D lineshapes like the phase twist into pure double absorption-
mode lineshapes.

The FDM line list can be used to create a substitute or
‘‘ersatz’’ NMR spectrum. This is, from an experimentalist’s
viewpoint, an aggressive approach, in which any signal not
detected by FDM will vanish from the spectrum. The justifi-
cation for this approach will hinge on comparison of the ersatz
spectrum with the FFT spectrum in cases where the data set is
known to be complete. An alternative and more conservative
approach is to calculate a ‘‘hybrid’’ spectrum by (i) construct-
ing the ersatz spectrum; (ii) synthesizing the time-domain
signal corresponding to this spectrum; (iii) subtracting this1 To whom correspondence should be addressed. ajshaka@uci.edu.
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signal from the original data; and (iv) Fourier transforming this
residual time signal, adding the result to the ersatz spectrum.
This hybrid approach is more conservative in that the original
noise, etc., in the data is retained but in which there may be
substantial improvement in spectral lineshapes. The relation-
ship of these spectra to previous approaches will become clear
in what follows.

THEORY

The Filter Diagonalization Method

FDM was first introduced in 1995 by Wall and Neuhauser
(4) as a method of spectral analysis of (one-dimensional) time
correlation functions in quantum dynamics calculations. It has
subsequently been substantially improved (5, 6) and extended
to the case of the multidimensional model (7) and experimental
(8) time signals. FDM has also been applied to a number of
important problems in the fields of theoretical chemistry and
physics (9–13) where it has shown both conceptual simplicity
and numerical efficiency when compared to past methods, and
where it has been accepted with enthusiasm. As the main point
of this paper is the actual experimental results we have ob-
tained using FDM with optimized pulse sequences, we will
only summarize the basic ideas and sketch the mathematical
underpinnings, without repeating detailed formulas. A detailed
account of 1D FDM (14) and 2D FDM (8) theory as applied to
time-domain NMR signals has already been given.

FDM is designed to solve theharmonic inversion problem,
which is essentially that of fitting the given complex time
signalcn 5 C(tn) defined on an equidistant time gridtn 5 nt,
n 5 0, 1, . . . ,N, to the sum of exponentially damped sinu-
soids,

cn 5 O
k51

K

dkexp~2intvk! , [1]

with a total of 2K unknowns, theK complex amplitudesdk, and
theK complex frequenciesvk 5 2pfk 2 igk, which include the
damping. The more compact notationvk is preferred, as the
imaginary partsgk (widths) of the frequencies always appear
together with the real parts 2pfk (positions) in FDM. Even
though the harmonic inversion problem is highly nonlinear, its
solution can be obtained purely by linear algebraic methods, of
which there are many variants. Some, like the Prony method
(15), MUSIC (16), ESPRIT (17), etc., are well known in signal
processing circles in the electrical engineering literature, and
others, like linear prediction (LP), have already been used
extensively in NMR applications (18–25) and are mature
enough that entire books have been devoted to their exposition
(26). There are some important differences between these
alternatives, some of which hinge on whether there may be any
prior knowledge about the signal in question. FDM makes no

assumptions concerning the number of lines, their frequencies,
or the level of noise contaminating the desired signal.

Briefly, the central ansatz (assumption) of FDM is to asso-
ciate the signalcn to be fitted by the form of Eq. [1] with the
time autocorrelation function of a fictitious dynamical system
described by an effective complex symmetric Hamiltonian
operatorV̂ with eigenvalues {vk} ( 4)

cn 5 ~F0 | e2intV̂F0! [2]

on some ‘‘initial state’’F0. The notation (.|.) denotes a com-
plex symmetric inner product, (a|b) 5 (b|a), without complex
conjugation. Note that under the assumption thatV̂ has a finite
rank, the usual LP formulas can be derived from Eq. [2].
However, FDM does not requirêV to be of finite rank. Using
Eq. [2], the fitting problem becomes equivalent to diagonaliz-
ing V̂ or, equivalently (6), the evolution operator over a single
time stepÛ 5 exp(2itV̂). Although we do not know eitherÛ
or F0, we can still find a basis in which matrix representations
of Û can be constructed. Furthermore, by a clever choice of
basis, it is possible to make the matrix representation ofÛ (i)
completely determined by the measured signalcn; (ii) diago-
nally dominant, with off-diagonal matrix elements that tend to
decay with a roughly sinc-like dependence along the minor
diagonal; and (iii) ordered according to frequency, just like the
conventional NMR spectrum. This matrix is easy to diagonal-
ize, and can be handled in series of frequency windows, each
of which generates a small submatrix of sizeKwin 3 Kwin,
whereKwin is between 3 and 100 depending on the details of
the problem. Finally, because an FFT can be used to construct
the matrix elements ofÛ from the FID itself (14) the numerical
effort to construct these matrices scales like the FFT, namely
roughly N log N for an FID of N complex points.

A generaltwo-dimensionalharmonic inversion problem can
be formulated as a nonlinear fit of a 2D time-domain arraycn1,n2

by the plane wave representation

cn1,n2 5 O
k51

K

dkexp~2in1t1v1k!exp~2in2t2v2k! [3]

with a total of 3K unknown complex numbers, i.e., theK
complex amplitudesdk and two sets ofK complex frequencies
(v1k, v2k). The key ansatz of 2D FDM is obtained by intro-
ducing two commuting complex symmetric operatorsV̂1, V̂2,
having the same set of eigenvectorsYk but different eigenval-
uesv1k, andv2k which are the unknown complex frequencies:

cn1,n2 5 ~F0|e2in1 V̂1t1e2in2V̂2t2F0! . [4]

Diagonalization of the operatorsÛ1 5 exp(2inV̂1t1) andÛ2 5
exp(2inV̂2t2) then yields the desired frequency coordinates
(and widths)v1k, andv2k of the peak in the two-dimensional
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plane, while the eigenvectorYk yields the intensity and phase,
dk (7, 8).

Spectral Representations: Ersatz Spectra

Assuming that the spectral parameters can be estimated by
FDM, an ‘‘ersatz spectrum’’ can easily be constructed by
summing over these parameters. As such the 1D absorption
ersatz spectrum of the (real) running frequencyF is given by

A~F ! 5 2 O
k

ImH dk

2pF 2 vk
J . [5]

Since, in the language of complex analysis, the spectrum is
determined by the position ofvk, in the complex plane, it is
economical to refer to each entry in the line list as apole.
Another useful example is the absorption-mode part of a 2D
ersatz spectrum, which can be defined as a function of the real
frequenciesF1, F2 as, e.g.,

A~F1, F2! 5 O
k

ImH 1

2pF1 2 v1k
J ImH dk

2pF2 2 v2k
J , @6#

in which it is assumed that the features are all in phase inF1.
Note here that while the quantityA(F1, F2) is obtained trivially
in terms of the spectral parameters, the expression in Eq. [6] is
highly nonlinear. In fact, there is some freedom in how one
chooses to construct a spectrum from the FDM line list. It is
always possible to construct a spectrum which would agree
with the conventional 2D FT spectrum, although this avenue is
unlikely to be useful if the 2D lineshapes are phase twists.
While the FDM line list itself may be of most use for other
computer programs to exploit, for example, in database search-
ing or automated assignment procedures, spectral representa-
tions are more useful for human appraisal.

Informational Considerations in 2D FDM

Clearly, the methods of spectral analysis based on solution
of the harmonic inversion problem, Eqs. [1] and [3], are
conceptually different from those based on the FT. In partic-
ular, the time-frequency ‘‘uncertainty principle,’’

dv 5 2p /Nt , [7]

which is an intrinsic property of the FT, can be sidestepped
by solving the harmonic inversion problem: the spectral
resolutiondf, defined by the width of a single peak or by the
distance between two close peaks, can be very small because
the complex frequenciesvk are now simply the fitting pa-
rameters. The quality of the fit is determined partly by
signal-to-noise considerations and can be very high even for
short data records. This difference becomes even more

striking when the multidimensional harmonic inversion
problem, Eq. [3], is compared to a conventional 2DFT
spectral analysis. In the latter case the uncertainty principle
is applied to each dimensionseparately,requiring a suffi-
ciently long extension of the 2D signalcn1,n2

in both direc-
tions, n1 andn2. When a fitting problem is to be solved the
requirement for the size,N1, N2, of the 2D signal is not that
strict. From the informational point of view, all unknown
spectral parameters (dk, v1k, v2k) can be extracted to a
precision dictated by signal-to-noise considerations once the
total amount of data, the productN1N2, is greater than the
total number of unknowns, 3K. This means that, in some
cases, it may be possible to ‘‘make up’’ for poor sampling
along one dimension by increasing the sampling along a
different dimension, which would be very attractive for
some NMR applications, in which it is typically easy to
obtain good digitization inF2. This statement is strictly true
for a model signal of randomly distributed narrow lines in
the 2D plane (7) and is approximately true for real 2D NMR
data in the absence of wide lines, many peaks with degen-
erate frequencies in either of the two dimensions, andt1
noise. Other possible limitations include true noise, and
numerical limitations associated with the highly nonlinear
character of the harmonic inversion problem. This potential
advantage is discarded once a Fourier transform is per-
formed in theF2 dimension, as is normally done in NMR
applications using LP, because then each interferogram is
treated separately, ignoring important correlations which are
picked up by an up-front 2D method.

It is important to realize the difference between the present
formulation of the 2D harmonic inversion problem, Eq. [3],
which consists of asingle sumover intrinsically 2D features,
and the direct-product formulations proposed previously in the
context of LP (27–29). In the latter case the authors used
models with a direct-product set of unknown spectral param-
eters, {v1k, v2k9, dkk9}, k 5 1, 2, . . . ,K1, k9 5 1, 2, . . .,K2, so
that in the 2D plane the unknown spectral features would form
a rectangularK1 3 K2 grid with totalK1 1 K2 1 K*1K2 number
of unknown parameters. In Eq. [3] the 2D frequenciesv1k, v2k

neednot form a direct-product 2D grid. The present non-direct-
product model does not preclude a direct-product output (as,
e.g., in the case of COSY and NOESY) yet results in a much
more compact representation for cases when the 2D spectra do
not have direct-product patterns, for example, HSQC or 2DJ
spectra, which are anticipated to be the most suitable applica-
tions for the present technique.

Local Spectral Analysis

Even though the harmonic inversion problem is a highly
nonlinear one, its solution, as in FDM, can be obtained by
pure linear algebra. This feature is shared by the other
‘‘high-resolution’’ methods (15–26). What makes FDM dif-
ferent from most of the other linear algebraic approaches,
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and thereby makes it far more useful for multidimensional
NMR applications, is its ability to avoid dealing with a large
linear algebraic problem of size at least as large as the rank
K of the signal subspace, which must include noise. This is
done by performing the spectral analysis locally for a cho-
sen frequency domain and, consequently, by solving a small
eigenvalue problem whose eigenvalues and eigenvectors
then yield the desired complex frequencies (v1k, v2k) and
amplitudesdk in this small spectral region. This ability to
hone in and perform a local spectral analysis thus avoids
problems of estimating the total rankK of the signal sub-
space. The parameters obtained are insensitive to spectral
properties outside the chosen small spectral domain, as may
be shown by adjusting the size of the latter and finding
identical results (6 – 8).

This divide-and-conquer strategy breaks down the har-
monic inversion problem, given by Eq. [1] or [3], into a
series of small spectral domains, each of which is handled in
a numerically stable, speedy, and reliable fashion. A com-
ment should be made here as the latter statement seems to be
in conflict with the harmonic inversion problem, which
implies a global fit of the entire time-domain signal, and as
the problem of choosing the parameterK is known to be a
major difficulty in the other linear algebraic approaches
based on theglobal fit of the signal by the sum of sinusoids.
It is known, for example, that a large filter lengthK should
be used in LP analysis whenever noise is present (26), yet
for long FIDs even a 1D problem produces matrices which
take days to handle on a vector computer (24) so the
tendency is to skimp somewhat onK, using the smallest
value that works. In FDM, however, no attempt is made to
achieve a global fit in one shot. The sizeKwin of the small
generalized eigenvalue problem is, in principle, an adjust-
able parameter, just likeK. For a givenKwin not more than
Kwin complex polesvk can be extracted: some of these poles
may be the true signal poles, and some may represent noise.
Based on our experience and the informational consider-
ations (7), however,we never consider Kwin as an adjustable
parameter,but instead, over a spectral region [Fmin, Fmax] in
a spectrum of spectral width SW, use the fixed formula

Kwin 5 û
N

2

~Fmax 2 Fmin!

SW
, [8]

that is, the largest number possible consistent with the local
information content of the signal. The factorû is between
1.0 and 1.1 to take account of edge effects. For a sufficiently
long FID,û is fixed at 1.0. When truncation is significant, so
that the grid points may be quite sparse,û is fixed at 1.1.
Whenever the fit is excellent it is also insensitive toû. When
all is said and done, FDM thus uses themaximum number of
poles to fit the entire frequency range, namelyN/2 for an
FID of lengthN complex points. This is important to realize

when comparing the timing of FDM with LP methods, as in
the latter the filter length is usually chosen to be somewhat
shorter thanN/2. An analogous 2D formula is used for 2D
spectral domains [F1min, F1max] 3 [F2min, F2max].

A conceptually similar but numerically different tech-
nique, LP-ZOOM, is a modification of the linear prediction
algorithm for local spectral analysis, and was demonstrated
in 1988 (30). LP-ZOOM potentially shares many of the
advantages of FDM but uses the familiar LP procedure to
construct the LP coefficients using a chosen filter length and
determines the frequencies and widths, and then the ampli-
tudes and phases, so that there are more adjustable param-
eters to optimize. LP-ZOOM is far preferable to conven-
tional LP methods, but no 2D formulation of LP-ZOOM is
available in the sense of Eq. [3].

Numerical Efficiency

There are two parts to the FDM algorithm, the construc-
tion of the matricesÛ and their diagonalization. Assuming
that the diagonalization scales asKwin

3 , the total numerical
effort to extract the spectral parameters will scale asN log
N 1 (N/2Kwin)Kwin

3 . The first term assumes that the matrix
elements are obtained by an FFT algorithm, and the second
just counts the number of frequency windows that need to be
used. In practice, for most NMR signals, the diagonalization
portion takes the lion’s share of the CPU time. As such,
using the FFT algorithm is not strictly necessary. Note,
however, that for reasonable values ofN the scaling is
actually purely linear as far as the diagonalization portion is
concerned, asKwin can remain fixed. In addition, due to the
small size of the matrices involved, FDM does not encoun-
ter numerical problems caused by the ill-conditioned nature
of these matrices; nor does it suffer from the typicalK3

scaling of the numerical effort with respect to the rank of the
signal subspace that is characteristic of conventional LP
methods. Finally, it is possible to implement FDM trivially
on a parallel architecture computer by simply assigning each
processor its own spectral domain to analyze. These fea-
tures, and the fact that in some NMR experiments one has a
rather good idea of where to expect signals or what signals

FIG. 1. The molecule under study. The resonances shown in the NMR
spectra in Fig. 2 arise from the protons on the ribose ring and several of the
substituents. Spin–spin coupling to fluorine-19 creates extra splittings in the
spectrum.
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are of particular interest, make FDM potentially extremely
useful in high-resolution NMR.

EXPERIMENTAL

Having emphasized the main features of FDM we now dem-
onstrate it on the experimental NMR signals and compare the
results with those obtained by conventional FT-based spectral
analysis. To demonstrate the actual power of the method we chose

quite long signals (N2 ; 104) having quite complex spectra, so
that efficient applications of the other linear algebraic methods
would be questionable. All proton NMR spectra were obtained at
25°C on a 500-MHz Varian UnityPlus spectrometer equipped
with a Varian triple-resonance pulsed field gradient probe. Pre-
cautions were taken to shim the magnet to obtain good, but not
outstanding, lineshape. There was no special sample preparation.
Processing was accomplished off-line on a small SGI Indigo
workstation or on a Pentium 133-MHz PC. It actually took sig-

FIG. 2. A 1.4 ppm section of the 1D spectrum of1 obtained by various data processing methods. The three FT spectra on the left show the quality of the
data and change in lineshape and resolution when the signal is truncated. Digital filtering and zero-filling have been used to obtain the best spectral representation.
The central three spectra are ersatz spectra constructed artificially from the poles of Eq. [2] detected by FDM. Although not easily visible at the vertical scale
of the figure, very small peaks in the baseline were identified with fidelity by FDM. The convergence onto the spectral features is somewhat different than with
the FT spectra. Note that narrow spectral features, especially if relatively isolated, are located very accurately. Wide overlapping lines converge onto the correct
amplitudes and widths more slowly with respect to the number of time-domain points. As follows from Eq. [8], a total of 264, 132, and 66 poles were used to
construct the ersatz spectra for the casesN 5 8192, 4096, and 2048, respectively, in an;1.4 ppm region centered on the expansion shown. Note, however, that
far fewer than this number of poles have significantly large amplitudesdk. The far right column shows the hybrid spectrum obtained as described in the text.
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nificantly more time to convert the data from one format to
another than to process it with FDM.

1D FDM

First we test the 1D version of FDM on a representative
section of the 1D NMR spectrum of the molecule shown in Fig.
1, a fluorinated ribose derivative. A 1.6 ppm interesting section
of the spectrum was selected, and the central 1.4 ppm section
is shown in Fig. 2 under a variety of processing conditions. As
is typical of many reaction product mixtures, traces of impurity
peaks are evident in the baseline. A large spin–spin coupling to
19F has split some of the proton multiplets. At top left is the
conventional FT spectrum obtained in 16 scans using 8K
complex points over a spectral width of 10 kHz, with the
700-Hz region of interest plotted. The spectra directly below
show the effect of truncating the time-domain signal at the
indicated number of data points. Apodization, to avoid severe
truncation effects, and zero-filling have been employed
throughout. As more and more of the FID is deleted, the
frequency resolution is degraded, in accordance with expecta-
tion. The three panels in the middle column show the FDM
ersatz spectra, constructed from the poles isolated by FDM
using Eq. [2], from the same FID. We must emphasize that
these spectra are obtaineddirectly from the time-domain data
itself, and not by any ‘‘extension’’ of the truncated FID fol-
lowed by a conventional FT, as is many times done with the LP
method. The right traces show the hybrid spectrum described
earlier, in which the residual between the original data and the
FDM fit is Fourier transformed and added to the ersatz spec-
trum. For the complete signal, along the top row, there is
negligible difference between the ersatz spectrum and the
hybrid spectrum, showing that FDM can achieve an excellent
fit. The hybrid spectrum is similar in spirit to that obtained by
extension of an FID with LP followed by a conventional FT.
However, LP extension and conventional FT is a slight mod-
ification of FT analysis. The hybrid spectrum is, on the other
hand, a slight modification of FDM, as it is FDM that was used
to construct the spectral features. To the extent that narrow
spectral features are correctly identified by FDM, these lines
are completely subtracted from the time-domain data, and so
the truncation artifacts that would have been produced by the
FT are avoided. The advantage of the hybrid spectrum is that
it retains noise, baseline roll, and other features of the recorded
data, and so is a conservative approach. The disadvantage is
that certain limitations of the FT itself cannot be overcome in
the hybrid spectrum, although if the residual is fairly small the
FT limitations apply only to an insignificant part of the data.

With regard to the numerical effort to obtain the ersatz
spectra shown, the total CPU time on a Pentium 133-MHz PC
using an unoptimized FORTRAN code compiled with the free
gnucompiler under LINUX were 5, 13, and 32 s for the 2048,
4096, and 8192 data sets, respectively. The scaling is not
strictly linear because this code uses aslowFT to construct the

matrix elements, andKwin was allowed to vary somewhat, for
convenience. If the entire spectral width were processed, these
times would increase by a factor of about 14. Note, however,
that it is not necessary to process empty spectral regions, or
regions of little interest, like those around a residual solvent
resonance.

2D FDM

The 2D J-resolved spectrum of the same molecule was
obtained using the pulse sequence of Fig. 3. This pulse se-
quence differs slightly from the conventional 2DJ sequence in
that two inversion pulses are used, one directly after the 90°
excitation pulse. This double spin echo (DSE) allows one to
use highly efficient frequency-modulated (FM) inversion
pulses without any offset-dependent orB1-dependent phase
shifts, as the even-numbered echoes from any composite in-
version pulse have constant phase (31). The use of a very
accurate 180° pulse makes certain that coherence transfer pro-
cesses akin to those in a COSY spectrum do not occur, mini-
mizing artifacts in the 2DJ-resolved spectrum.

The top trace in Fig. 4 shows an integral projection of the
absolute-value 2DJ spectrum along the 45° diagonal in fre-
quency space, to give the proton–proton decoupled spectrum of
the same 1.6 ppm region. Coupling to fluorine-19 is not, of
course, removed in the projection. The data matrix consisted of
16K complex points over a 10-kHz spectral width inF2,
zero-filled to 32K, and 64 increments inF1 over a spectral
width of 650 Hz, zero-filled to 128 points. Digital resolution
is thus quite good but, as is well known, the dispersion-mode
tails of the phase-twist lineshape lead to ‘‘Eiffel Tower’’
lineshapes in the projection, in which the decoupled line is far
wider than an individual multiplet line in the absorption-mode
1D spectrum. Various remedies have been tried in the past. The
use of heavy resolution enhancement digital filters like the
‘‘pseudo-echo’’ can improve the appearance of the projection,
but at the cost of large intensity distortions between lines of
different natural linewidth, and a heavy toll in sensitivity (32).
Frequency-domain computer procedures to iteratively remove
the dispersion-mode contributions, and so avoid the null pro-

FIG. 3. A modified pulse sequence for 2DJ-resolved spectroscopy using
a double spin echo (DSE). The 180° inversion pulses were 50-ms FM pulses
with a constant 25-kHz RF amplitude designed to invert the entire proton
bandwidth. Phase shifts of the spin echo which would be created by the
application of a single such pulse are conveniently removed by a second
inversion pulse immediately after the 90° excitation pulse.
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FIG. 4. (Top) Integral 45° projection of the absolute-value 2DFTJ spectrum to obtain a proton-decoupled proton spectrum. A total of 64t1 increments
were used, leading to a frequency-domain data matrix of 16K3 128 points over a spectral range of 10 kHz3 100 Hz after zero-filling. Dispersion-mode
tails of the phase-twist lineshape lead to poor resolution in the projection. The asterisk marks an ‘‘artifact’’ arising from non-first-order coupling. (Center)
The integral 45° projection of the absorption-mode ersatz spectrum constructed from the poles isolated by FDM. Only 16t1 increments were used. There
is a dramatic improvement in resolution. (Bottom) An expanded portion of the ersatz 2DJ-resolved spectrum after the transformation Eq. [9] has been
applied to each pole. The original spectral width inF1 was650 Hz, of which the central625-Hz region has been extracted. The FT spectrum (without
zero-filling) would thus contain only 8 data points across this frequency range based on the same 16-point interferograms. Nevertheless, beautiful multiplet
cross sections are obtained by FDM, without the baseline distortion characteristic of the usual phase-sensitive cross sections in the FT spectrum. The
strong-coupling artifact lies outside the region shown.
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jection, require a very high-resolution high signal-to-noise data
matrix to work, do not handle lines of different width properly,
falter if a line is narrower than presumed by the operator
processing the data, and do not necessarily converge (33).
‘‘Skyline projection’’ distorts signal amplitudes and amplifies
noise in the projection (34).

The second trace shows the absorption-mode projection
from the 2D FDM (7) ersatz spectrum with the same databut
using only the first 16 t1 increments,obtained as follows. The
2D time-domain signal was analyzed in the frequency region of
interest and the poles (v1k, v2k) and amplitudesdk were iso-
lated. The absorption-mode spectrum was then constructed by
Eq. [6]. Finally, a simple transformation of each pole

A~F2! 5 2 O
k

Im H dk

2pF2 1 Re$v1k% 2 v2k
J [9]

was used to pick up each 2D peak literally and place it in the
appropriate registration for the projection alongF1. There is
clearly a dramatic improvement in resolution in the pro-
jected spectrum. This result is even more remarkable when
the 6.25-Hz digital resolution inF1 is taken into account.
The ersatz absorption-mode 2DJ-resolved spectrum at the
bottom of Fig. 4 shows that the multiplet features are
correctly identified even though many of the splittings are
substantially less than 6 Hz. We are quite confident that,
using 2D FDM, similar quality results could be obtained
with even shorter time signals in each dimension, but we
made no attempt to optimize the exact signal size. The entire
2D processing occupied an SGI workstation (200-MHz
R4400 FPU) for less than half an hour.

SUMMARY

In summary, we have demonstrated a powerful new alter-
native to conventional methods of spectral analysis, the filter
diagonalization method, and applied it to phase-sensitive 1D
and 2D NMR spectra. Using FDM we were able to overcome
the phase-twist lineshape problem, circumvent the strict limi-
tations of the time-frequency uncertainty principle, and con-
struct a 2D spectrum from a large data set in which no FT
processing was used at all. It should be obvious that any
phase-modulated data set of sufficient signal quality can be
advantageously processed by FDM, and that the gains in high-
er-dimensional spectra may be even more noteworthy. More
experimental work is clearly indicated, but FDM appears to be
a fairly conservative data processing method that does not, for
example, introduce spurious splittings. Our formulation of
FDM is less subjective in application and interpretation than
typical LP methods, as typical adjustable parameters like the
filter length do not exist for FDM; it is also more efficient
computationally. While we have comparedspectra to show
FDM versus the familiar FT method, when it comes to extract-

ing informationon line positions, widths, and intensities, FDM
will prove to be of particular advantage versus spectral-based
schemes, providing a database that can be used directly for the
assignment procedure. Finally, while FDM is slower compu-
tationally than a simple FFT, itscalesin much the same way,
making it a compelling solution for very large multidimen-
sional NMR data sets where other linear algebraic approaches
become prohibitively expensive.
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